Distinguishing Asthma Phenotypes Using Machine Learning Approaches
نویسندگان
چکیده
Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as 'asthma endotypes'. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies.
منابع مشابه
Bayesian Machine Learning Approaches for Longitudinal Latent Class Modelling to Define Wheezing Phenotypes to Elucidate Environmental Associates
Accurate phenotypic definition of wheezing in childhood can lead to a greater understanding of the distinct physiological markers associated with different wheeze phenotypes. This paper looks at Bayesian machine learning approaches using Infer.NET to define wheeze phenotypes based on both parental questionnaires and General Practitioner data on patterns of asthma and wheeze consultation within ...
متن کاملA Comparison of Frequentist and Bayesian Approaches to Latent Class Modelling of Susceptibility to Asthma and Patterns of Antibiotic Prescriptions in Early Life Student Poster Presentation
The assessment of patterns of antibiotic use in early life may have major implications for understanding the development of asthma. This paper compares a classical generalized latent variable modelling framework and a Bayesian machine learning approach to define latent classes of susceptibility to asthma based on patterns of antibiotic use in early life. We compare the potential advantages of e...
متن کاملماشین بینایی تشخیصگر باروری تخممرغ و ارزیابی کارایی شبکههای عصبی و ماشین بردار پشتیبان در آن
In this research, a system is proposed for detecting fertility of eggs. The system is composed of two parts: hardware and software. The fabricated hardware provides a platform to obtain accurate images from inner side of the eggs, without harming their embryos. The software part includes a set of image processing and machine vision processes, which is able to detect the fertility of eggs from c...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015